您所在的位置 > 首页 >
新闻动态
车联网的大数据在预测方面可以发挥到极致
行业新闻
大数据,就是海量信息,就是在大平台后背所积累的对客户的大量信息数据,主要包括社交媒体所产生的数据,音频、视频、图像数据和来自物联网的数据,具有海量、快速、多样性和不确定性等特点,特别是数据的成几何级的爆炸性增长特点尤为突出,美国互联网数据中心指出,互联网上的数据每年将增长50%,每两年便将翻一番,而目前世界上90%以上的数据是最近几年才产生的。
大数据技术的价值不在于掌握散乱的海量的信息,而是通过对数据进行专业性分析所带来的巨大价值是无限的。因此,大数据成为世界各国政策层面鼎力推动的战略计划,2012年3月,美国白宫科技政策办公室发布了《大数据研究和发展计划》,同时组建“大数据高级指导小组”,由此可见美国政府对大数据的重视度。
大数据除了在如今全球繁荣的电子商务产业中有非常重要的应用之外,在其它领域的应用也不在少数。其中通过与车联网的深度融合将打造高效的交通网络。
大数据时代,通过对驾驶者总行驶里程、日行驶时间等数据,以及急刹车次数、急加速次数等驾驶行为在云端的分析,有效地帮助保险公司全面了解驾驶者的驾驶习惯和驾驶行为,有利于保险公司发展优质客户,提供不同类型的保险产品。
目前,车联网作为移动互联网大背景下诞生的一个产物,不管是车辆的接入、服务内容的选择还是服务的精准性,都离不开大数据。
车辆上传的每一组数据都带有位置信息和时间,并且很容易形成海量数据。一方面,如果说大数据的特征是完整和混杂,而车联网与车有关的大数据特征是完整加精准。如某些与车辆本身有关的数据,都有明确的一个ID,根据这个ID可以关联到相应的车主信息,并且这些信息还是精准的。
另一方面,我们可以看到车联网与驾驶人的消费习惯、兴趣爱好等大数据特征是完整和部分精确。因此,研究车联网的大数据更有意义。
目前车联网所提供的主动安全方面的措施大致有胎压监测、故障预警、碰撞报警、安全气囊弹出报警、紧急救援等。但目前在主动安全方面的设备更多是车辆上的一个节点,并没有真正的和大数据关联起来。
在大数据时代,当汽车在行驶过程中,平台可对轮胎气压进行实时自动监测,并对轮胎漏气和低气压进行报警,以确保行车安全。胎压监测有直接和间接两种,直接的通过传感器来监测,而间接的监测是当某轮胎的气压降低时,车辆的重量会使该轮的滚动半径将变小,导致其转速比其他车轮快。
车联网的大数据在预测方面可以发挥到极致。如,预测交通堵塞的地段,实时交通信息,主动安全,公交的排班。驾驶者驾驶行为分析。
大数据的核心在于预测,这在车联网行业非常有用,例如,对于交通流量的预测,就非常需要大数据。对于交通流量,目前我们的仿真系统更加重视交通流量大,拥堵的原因,而大数据时代,不再在乎因果关系,而重视相关性,也就是不去分析产生拥堵的原因,但确实某个时段某个路段会发生拥堵。也可以根据车联网的大数据对车友的兴趣进行分析。
同时,大数据时代,影响着我们的思维。以前我们对于出行过程的理解,传统的观念只注重为客户提供导航和娱乐这一功能,并没有对这一过程进行深度的分析。这个过程中,分别为去之前,在路上,停车后。对于这个过程,我们可以延伸出很多车联网的服务内容,并且每个阶段都离不开熟人社会,每个阶段都会产生大数据,大数据可延伸很多增值服务。
服务内容的精准性如果单纯靠服务提供商的力量,那服务商将要投入巨大的人力或资本并且要经历很长的时间,显然这种方式不可行。解决这种问题,理想的方法就是通过车主的与社区网站的互动,只有通过这种方式,才能快速地采集到相应的兴趣点。这必须要进行大数据分析。
对于客户信息,无论是车厂还是汽车销售商,都视为命根子,可事实是什么?事实是现阶段这些客户信息一点用都没有,能从这些客户信息中延伸出一些增值服务吗?很难。说白了,这些信息无法带来“顾客终生价值”顾客终生价值指的是每个购买者在未来可能为企业带来的收益总和。